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Synchronous Sequential Circuit Design



Combinational Logic

• Combinational Logic:

– Output depends only on current input

– Has no memory



Sequential Logic

• Sequential Logic:

– Output depends not only on current input but also on past input 
values, e.g., design a counter

– Need some type of memory to remember the past input values



Sequential Circuits

Information Storing
Circuits

Timed “States”



Types of Sequential circuits

Synchronous vs. Asynchronous

There are two types of sequential circuits:
• Synchronous sequential circuit: circuit output

changes only at some discrete instants of
time. This type of circuits achieves
synchronization by using a timing signal called
the clock.

• Asynchronous sequential circuit: circuit
output can change at any time (clockless).



Synchronous Sequential Circuits:
Flip flops as state memory

◼ The flip-flops receive their inputs from the 
combinational circuit and also from a clock signal 
with pulses that occur at fixed intervals of time, 
as shown in the timing diagram.



Moore and Mealy Models

• Sequential Circuits or Sequential Machines are also called Finite State 

Machines (FSMs).   Two formal models exist:

▪ Moore Model

• Named after E.F. Moore 

• Outputs are only a function of 

states

▪ Mealy Model

• Named after G. Mealy

• Outputs are a function of inputs
and states



Types of Sequential Circuits Illustra

• Moore machine:

– Outputs = h(State)

• Mealy machine

– Outputs = g(Inputs, State)
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Sequential circuit design procedure

Step 1:
Make a state table based on the problem statement. The table should 
show the present states, inputs, next states and outputs. (It may be 
easier to find a state diagram first, and then convert that to a table)

Step 2:
Assign binary codes to the states in the state table, if you haven’t already. 
If you have n states, your binary codes will have at least
log2 n digits, and your circuit will have at least log2 n flip-flops

Step 3:
For each flip-flop and each row of your state table, find the flip-flop input 
values that are needed to generate the next state from the present state. 
You can use flip-flop excitation tables here.

Step 4:
Find simplified equations for the flip-flop inputs and the outputs.

Step 5:
Build the circuit!



Sequence recognizer

• A sequence recognizer is a special kind of sequential circuit that looks 
for a special bit pattern in some input

• The recognizer circuit has only one input, X

– One bit of input is supplied on every clock cycle
– This is an easy way to permit arbitrarily long input sequences

• There is one output, Z, which is 1 when the desired pattern is found

• Our example will detect the bit pattern “1001”:

Inputs: 1 1 1 0 01 1 0 1 00 1 00 1 1 0 … 
Outputs: 0 00 0 01 00 0 00 1 00 1 0 0 … 

• A sequential circuit is required because the circuit has to “remember” 
the inputs from previous clock cycles, in order to determine whether 
or not a match was found



Step 1: Making a state table

• The first thing you have to figure out is precisely how the use of state 

will help you solve the given problem

– Make a state table based on the problem statement. The table 

should show the present states, inputs, next states and outputs

– Sometimes it is easier to first find a state diagram and then 

convert that to a table

• This is usually the most difficult step. Once you have the state table, 

the rest of the design procedure is the same for all sequential circuits



A basic state diagram

• What state do we need for the sequence recognizer?

– We have to “remember” inputs from previous clock cycles

– For example, if the previous three inputs were 100 and the current 
input is 1, then the output should be 1

– In general, we will have to remember occurrences of parts of the 
desired pattern—in this case, 1, 10, and 100

• We’ll start with a basic state diagram:

A B C D
1/0 0/0 0/0

State Meaning

A None of the desired pattern (1001) has been input yet.

B We’ve already seen the first bit (1) of the desired pattern.

C We’ve already seen the first two bits (10) of the desired pattern.

D We’ve already seen the first three bits (100) of the desired pattern.
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Overlapping occurrences of the pattern

• What happens if we’re in state D (the last three inputs were 100), and 

the current input is 1?

– The output should be a 1, because we’ve found the desired pattern

– But this last 1 could also be the start of another occurrence of the 
pattern! For example, 1001001 contains two occurrences of 1001

– To detect overlapping occurrences of the pattern, the next state 

should be B.

A B C D
1/0 0/0 0/0

1/1

State Meaning 

A None of the desired pattern (1001) has been input yet. 

B We’ve already seen the first bit (1) of the desired pattern. 

C We’ve already seen the first two bits (10) of the desired pattern. 

D We’ve already seen the first three bits (100) of the desired pattern. 
 

 



14

Filling in the other arrows

• Two outgoing arrows for each node, to account for the possibilities of 

X=0 and X=1

• The remaining arrows we need are shown in blue. They also allow for 

the correct detection of overlapping occurrences of 1001.

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

State Meaning 

A None of the desired pattern (1001) has been input yet. 

B We’ve already seen the first bit (1) of the desired pattern. 

C We’ve already seen the first two bits (10) of the desired pattern. 

D We’ve already seen the first three bits (100) of the desired pattern. 
 

 



Mealy state diagram & table

A B C D
1/0 0/0 0/0

1/1

0/0

0/0

1/0

1/0

Present

State Input

Next

State Output

A 0 A 0

A 1 B 0

B 0 C 0

B 1 B 0

C 0 D 0

C 1 B 0

D 0 A 0

D 1 B 1



Present

State Input

Next

State Output

A 0 A 0

A 1 B 0

B 0 C 0

B 1 B 0

C 0 D 0

C 1 B 0

D 0 A 0

D 1 B 1

Step 2: Assigning binary codes to states

Present

State Input

Next

State Output

Q1 Q0 X Q1 Q0 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 0 1 1

• We have four states ABCD, so we need at least two flip-flops Q1Q0

• The easiest thing to do is represent state A with Q1Q0 = 00, B with 01, C 
with 10, and D with 11

• The state assignment can have a big impact on circuit complexity, but we 
won’t worry about that too much in this class



Step 3: Finding flip-flop input values

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 0 1 1

• Next we have to figure out how to actually make the flip-flops change 
from their present state into the desired next state

• This depends on what kind of flip-flops you use! 

• We’ll use two JKs. For each flip-flip Qi, look at its present and next states, 
and determine what the inputs Ji and Ki should be in order to make that 
state change.



Finding JK flip-flop input values

• For JK flip-flops, this is a little tricky. Recall the characteristic table:

• If the present state of a JK flip-flop is 0 and we want the next state to be 
1, then we have two choices for the JK inputs:

– We can use JK= 10, to explicitly set the flip-flop’s next state to 1

– We can also use JK=11, to complement the current state 0

• So to change from 0 to 1, we must set J=1, but K could be either 0 or 1

• Similarly, the other possible state transitions can all be done in two

different ways as well

J K Q(t+1) Operation

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement



JK excitation table

• An excitation table shows what flip-flop inputs are required in order to

make a desired state change

• This is the same information that’s given in the characteristic table, but

presented “backwards”

J K Q(t+1) Operation

0 0 Q(t) No change

0 1 0 Reset

1 0 1 Set

1 1 Q’(t) Complement

Q(t) Q(t+1) J K Operation

0 0 0 x No change/reset

0 1 1 x Set/complement

1 0 x 1 Reset/complement

1 1 x 0 No change/set



Back to the example

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1

• Use the JK excitation table on the right to

find the correct values for each flip-flop’s

inputs, based on its present and next states

Q(t) Q(t+1) J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0



• Now you can make K-maps and find equations for each of the four flip-
flop inputs, as well as for the output Z

• These equations are in terms of the present state and the inputs

• The advantage of using JK flip-flops is that there are many don’t care 
conditions, which can result in simpler equations

Step 4: Find equations for the FF inputs and output

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1



FF input equations

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1

J1 Q1 Q0

00 01 11 10

X
0 0 1 x x

1 0 0 x x

J1 = X’ Q0

K1 Q1 Q0

00 01 11 10

X
0 x x 1 0

1 x x 1 1

K1 = X + Q0



FF input equations

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1

J0 Q1 Q0

00 01 11 10

X
0 0 x x 1

1 1 x x 1

J0 = X + Q1

K0 Q1 Q0

00 01 11 10

X
0 x 1 1 x

1 x 0 0 x

K0 = X’



Output equation

Present

State Input

Next

State Flip flop inputs Output

Q1 Q0 X Q1 Q0 J1 K1 J0 K0 Z

0 0 0 0 0 0 x 0 x 0

0 0 1 0 1 0 x 1 x 0

0 1 0 1 0 1 x x 1 0

0 1 1 0 1 0 x x 0 0

1 0 0 1 1 x 0 1 x 0

1 0 1 0 1 x 1 1 x 0

1 1 0 0 0 x 1 x 1 0

1 1 1 0 1 x 1 x 0 1

Z Q1 Q0

00 01 11 10

X
0

1 1

Z = X Q1 Q0



Step 5: Build the circuit

• Lastly, we use these simplified equations to build the completed circuit

J1 = X’ Q0

K1 = X + Q0

J0 = X + Q1

K0 = X’

Z = Q1Q0X



Timing diagram

• Here is one example timing diagram for our sequence detector

– The flip-flops Q1Q0 start in the initial state, 00

– On the first three positive clock edges, X is 1, 0, and 0. These inputs 
cause Q1Q0 to change, so after the third edge Q1Q0 = 11

– Then when X=1, Z becomes 1 also, meaning that 1001 was found

• The output Z does not have to change at positive clock edges. Instead, it 
may change whenever X changes, since Z = Q1Q0X

CLK

Q1

Q0

X

Z

1 2 3 4



Building the same circuit with D flip-flops

• What if you want to build the circuit using D flip-flops instead?

• We already have the state table and state assignments, so we can just 

start from Step 3, finding the flip-flop input values

• D flip-flops have only one input, so our table only needs two columns for 

D1 and D0

Present

State Input

Next

State

Flip-flop

inputs Output

Q1 Q0 X Q1 Q0 D1 D0 Z

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 1 0 0

0 1 1 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 0 0 0

1 1 1 0 1 1



D flip-flop input values (Step 3)

• The D excitation table is pretty boring; 
set the D input to whatever the next 
state should be

• You don’t even need to show separate 
columns for D1 and D0; you can just use 
the Next State columns

Present

State Input

Next

State

Flip flop

inputs Output

Q1 Q0 X Q1 Q0 D1 D0 Z

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 0

1 0 0 1 1 1 1 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 1 0 1 0 1 1

Q(t) Q(t+1) D Operation

0 0 0 Reset

0 1 1 Set

1 0 0 Reset

1 1 1 Set



Finding equations (Step 4)

Present

State Input

Next

State

Flip flop

inputs Output

Q1 Q0 X Q1 Q0 D1 D0 Z

0 0 0 0 0 0 0 0

0 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 0

1 0 0 1 1 1 1 0

1 0 1 0 1 0 1 0

1 1 0 0 0 0 0 0

1 1 1 0 1 0 1 1

D1 Q1 Q0

00 01 11 10

X
0 1 1

1

D1 = Q1 Q0’ X’ + Q1’ Q0 X’

D0 Q1 Q0

00 01 11 10

X
0 1

1 1 1 1 1

D0 = X + Q1 Q0’

Z Q1 Q0

00 01 11 10

X
0

1 1

Z = X Q1 Q0



Building the circuit (Step 5)



Binary Counter

One-input/one-output modulo-8 binary counter: produces output value 
1 for every eighth input 1 value

State diagram and state table:

0/0 0/01/1 1/0

0/0

0/0

1/0 1/0

S0

S3S5

S7

S6 S2

S4

S1

1/0

1/01/0

1/0

0/0

0/0

0/0
0/0



Binary Counter (Contd.)

Transition and output tables:

Excitation table for T
flip-flops and logic diagram:

T1 = x
T2 = xy1

T3 = xy1y2

z = xy1y2y3

z

T1

1

0

x

y1

T3

1

0

y3

T2

1

0

y2



Implementing the Counter with SR Flip-flops

Transition and output tables:

Excitation table for SR
flip-flops and logic diagram: S1 = xy1’

R1 = xy1

S2 = xy1y2’
R2 = xy1y2

S3 = xy1y2y3’
R3 = z = xy1y2y3

S3

R3

y3

0

1
y3

y3

S1

R1

x

y1

0

1
y1

y1

S2

R2

y2

0

1
y2

y2

Cell 1 Cell 3Cell 2

z



Summary

• The basic sequential circuit design procedure:

– Make a state table and, if desired, a state diagram. This step is usually 
the hardest

– Assign binary codes to the states if you didn’t already

– Use the present states, next states, and flip-flop excitation tables to 
find the flip-flop input values

– Write simplified equations for the flip-flop inputs and outputs and build 
the circuit



THANK YOU

ANY QUESTIONS?????
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