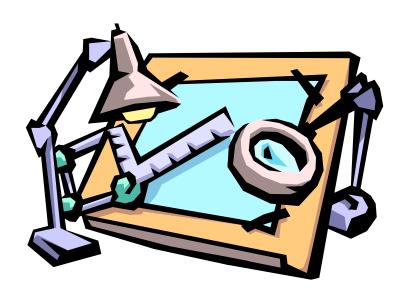
Synchronous Sequential Circuit Design



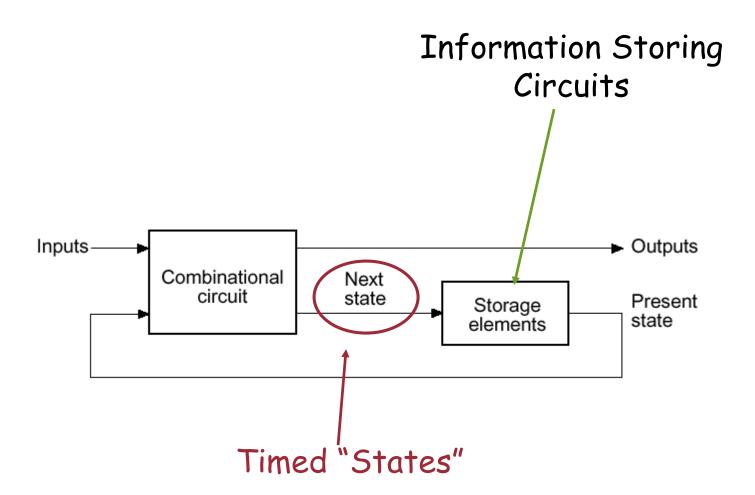
Combinational Logic

- Combinational Logic:
 - Output depends only on current input
 - Has no memory

Sequential Logic

- Sequential Logic:
 - Output depends not only on current input but also on past input values, e.g., design a counter
 - Need some type of memory to remember the past input values

Sequential Circuits



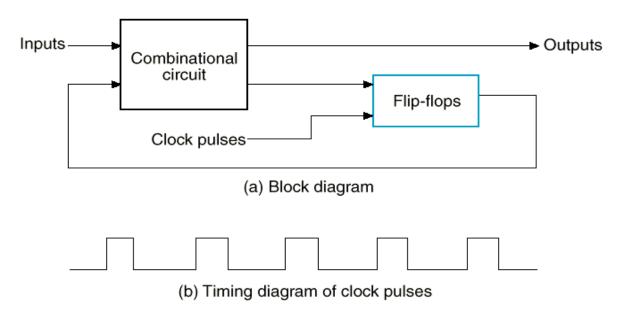
Types of Sequential circuits

Synchronous vs. Asynchronous

There are two types of sequential circuits:

- Synchronous sequential circuit: circuit output changes only at some discrete instants of time. This type of circuits achieves synchronization by using a timing signal called the clock.
- Asynchronous sequential circuit: circuit output can change at any time (clockless).

Synchronous Sequential Circuits: Flip flops as state memory



■ The flip-flops receive their inputs from the combinational circuit and also from a clock signal with pulses that occur at fixed intervals of time, as shown in the timing diagram.

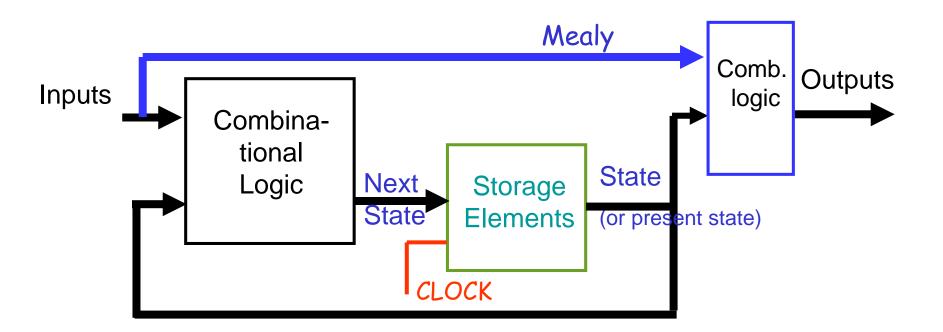
Moore and Mealy Models

- Sequential Circuits or Sequential Machines are also called Finite State Machines (FSMs). Two formal models exist:
- Moore Model
 - Named after E.F. Moore
 - Outputs are only a function of states

- Mealy Model
 - Named after G. Mealy
 - Outputs are a function of <u>inputs</u> and <u>states</u>

Types of Sequential Circuits Illustra

- Moore machine:
 - Outputs = h(State)
- Mealy machine
 - Outputs = g(Inputs, State)



Sequential circuit design procedure

Step 1:

Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs. (It may be easier to find a state diagram first, and then convert that to a table)

Step 2:

Assign binary codes to the states in the state table, if you haven't already. If you have n states, your binary codes will have at least $\lceil \log_2 n \rceil$ digits, and your circuit will have at least $\lceil \log_2 n \rceil$ flip-flops

Step 3:

For each flip-flop and each row of your state table, find the flip-flop input values that are needed to generate the next state from the present state. You can use flip-flop excitation tables here.

Step 4:

Find simplified equations for the flip-flop inputs and the outputs.

<u>Step 5:</u>

Build the circuit!

Sequence recognizer

- A sequence recognizer is a special kind of sequential circuit that looks for a special bit pattern in some input
- The recognizer circuit has only one input, X
 - One bit of input is supplied on every clock cycle
 - This is an easy way to permit arbitrarily long input sequences
- There is one output, Z, which is 1 when the desired pattern is found
- Our example will detect the bit pattern "1001":

Inputs: 11100110100100110...
Outputs: 0000010000100100...

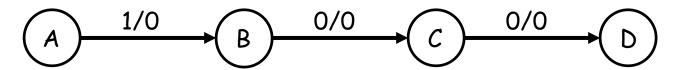
 A sequential circuit is required because the circuit has to "remember" the inputs from previous clock cycles, in order to determine whether or not a match was found

Step 1: Making a state table

- The first thing you have to figure out is precisely how the use of state will help you solve the given problem
 - Make a state table based on the problem statement. The table should show the present states, inputs, next states and outputs
 - Sometimes it is easier to first find a state diagram and then convert that to a table
- This is usually the most difficult step. Once you have the state table,
 the rest of the design procedure is the same for all sequential circuits

A basic state diagram

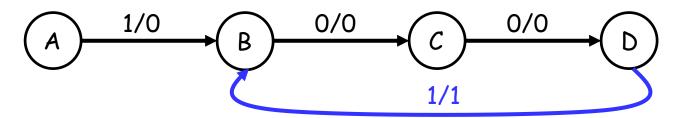
- What state do we need for the sequence recognizer?
 - We have to "remember" inputs from previous clock cycles
 - For example, if the previous three inputs were 100 and the current input is 1, then the output should be 1
 - In general, we will have to remember occurrences of parts of the desired pattern—in this case, 1, 10, and 100
- We'll start with a basic state diagram:



State	Meaning
Α	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
С	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Overlapping occurrences of the pattern

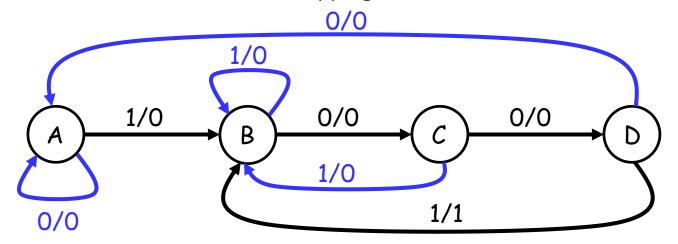
- What happens if we're in state D (the last three inputs were 100), and the current input is 1?
 - The output should be a 1, because we've found the desired pattern
 - But this last 1 could also be the start of another occurrence of the pattern! For example, 1001001 contains two occurrences of 1001
 - To detect overlapping occurrences of the pattern, the next state should be B.



State	Meaning
	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
C	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

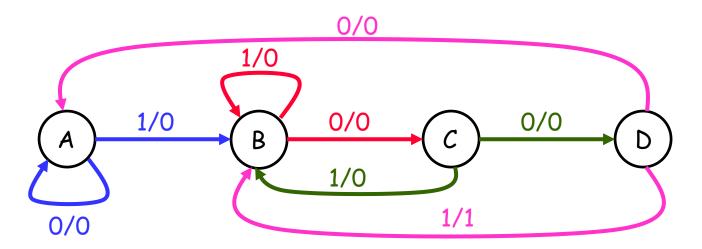
Filling in the other arrows

- Two outgoing arrows for each node, to account for the possibilities of X=0 and X=1
- The remaining arrows we need are shown in blue. They also allow for the correct detection of overlapping occurrences of 1001.



State	Meaning
	None of the desired pattern (1001) has been input yet.
В	We've already seen the first bit (1) of the desired pattern.
	We've already seen the first two bits (10) of the desired pattern.
D	We've already seen the first three bits (100) of the desired pattern.

Mealy state diagram & table



Present		Next	
State	Input	State	Output
A	0	A	0
A	1	В	0
В	0	C	0
В	1	В	0
C	0	D	0
C	1	В	0
D	0	Α	0
D	1	В	1

Step 2: Assigning binary codes to states

- We have four states ABCD, so we need at least two flip-flops Q_1Q_0
- The easiest thing to do is represent state A with Q_1Q_0 = 00, B with 01, C with 10, and D with 11
- The state assignment can have a big impact on circuit complexity, but we won't worry about that too much in this class

Present		Next	
State	Input	State	Output
Α	0	Α	0
A	1	В	0
В	0	C	0
В	1	В	0
C	0	D	0
C	1	В	0
D	0	Α	0
D	1	В	1

Pre	sent		Next		
St	ate	Input	Sto	ate	Output
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Step 3: Finding flip-flop input values

- Next we have to figure out how to actually make the flip-flops change from their present state into the desired next state
- This depends on what kind of flip-flops you use!
- We'll use two JKs. For each flip-flip Q_i , look at its present and next states, and determine what the inputs J_i and K_i should be in order to make that state change.

Pres	sent		Next						
Sto	ate	Input	St	ate	Fl	ip flop	o input	·s	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K ₁	Jo	Ko	Z
0	0	0	0	0					0
0	0	1	0	1					0
0	1	0	1	0					0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

Finding JK flip-flop input values

For JK flip-flops, this is a little tricky. Recall the characteristic table:

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

- If the present state of a JK flip-flop is 0 and we want the next state to be 1, then we have two choices for the JK inputs:
 - We can use JK= 10, to explicitly set the flip-flop's next state to 1
 - We can also use JK=11, to complement the current state 0
- So to change from 0 to 1, we must set J=1, but K could be either 0 or 1
- Similarly, the other possible state transitions can all be done in two different ways as well

JK excitation table

 An excitation table shows what flip-flop inputs are required in order to make a desired state change

Q(†)	Q(†+1)	J	K	Operation
0	0	0	X	No change/reset
0	1	1	×	Set/complement
1	0	×	1	Reset/complement
1	1	×	0	No change/set

 This is the same information that's given in the characteristic table, but presented "backwards"

J	K	Q(†+1)	Operation
0	0	Q(†)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Complement

Back to the example

 Use the JK excitation table on the right to find the correct values for each flip-flop's inputs, based on its present and next states

Q(†)	Q(†+1)	J	K
0	0	0	X
0	1	1	X
1	0	×	1
1	1	×	0

Present		Ne	ext						
State		Input	Sto	ate	Fl	ip flop	o input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K ₁	J_0	K ₀	Z
0	0	0	0	0	0	×	0	×	0
0	0	1	0	1	0	X	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	×	X	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	×	1	X	1	0
1	1	1	0	1	X	1	X	0	1

Step 4: Find equations for the FF inputs and output

- Now you can make K-maps and find equations for each of the four flipflop inputs, as well as for the output Z
- These equations are in terms of the present state and the inputs
- The advantage of using JK flip-flops is that there are many don't care conditions, which can result in simpler equations

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	Fl	ip flop	o input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	K_0	Z
0	0	0	0	0	0	×	0	×	0
0	0	1	0	1	0	X	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	×	1	X	1	0
1	1	1	0	1	X	1	X	0	1

FF input equations

Pres	sent		Ne	ext					
Sto	ate	Input	Sto	ate	Fl	ip flo	p input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	K ₀	Z
0	0	0	0	0	0	×	0	X	0
0	0	1	0	1	0	×	1	×	0
0	1	0	1	0	1	X	×	1	0
0	1	1	0	1	0	×	×	0	0
1	0	0	1	1	X	0	1	×	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	X	1	X	1	0
1	1	1	0	1	X	1	X	0	1

J	1	$Q_1 Q_0$					
		00	01	11	10		
\ <u>/</u>	0	0	1	×	X		
X	1	0	0	×	X		

$$J_1 = X' Q_0$$

K	1	$Q_1 Q_0$							
		00	01	11	10				
\	0	X	X	1	0				
X	1	X	X	1	1				

$$K_1 = X + Q_0$$

FF input equations

Pres	sent		Ne	xt					
Sto	ate	Input	Sto	ate	Fl	ip flop	input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	Ko	Z
0	0	0	0	0	0	X	0	X	0
0	0	1	0	1	0	X	1	X	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	×	0	0
1	0	0	1	1	×	0	1	X	0
1	0	1	0	1	X	1	1	X	0
1	1	0	0	0	×	1	×	1	0
1	1	1	0	1	×	1	X	0	1

J	0	$Q_1 Q_0$						
		0	01	11	10			
V	0	0	×	×	1			
X	1	1	×	X	1			

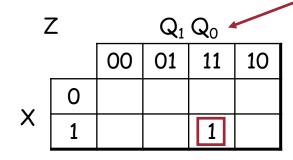
$$J_0 = X + Q_1$$

K	, O	$Q_1 Q_0$						
		00	01	11	10			
. ,	0	X	1	1	X			
X	1	×	0	0	X			

$$K_0 = X'$$

Output equation

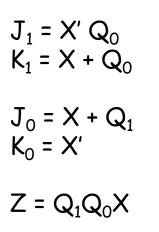
Pres	sent		Ne	xt					
Sto	ate	Input	Sto	ate	Fl	ip flop	o input	S	Output
Q_1	Q_0	X	Q_1	Q_0	J_1	K ₁	J_0	K ₀	Z
0	0	0	0	0	0	×	0	X	0
0	0	1	0	1	0	X	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	1	×	0	1	×	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	×	1	X	1	0
1	1	1	0	1	X	1	X	0	1

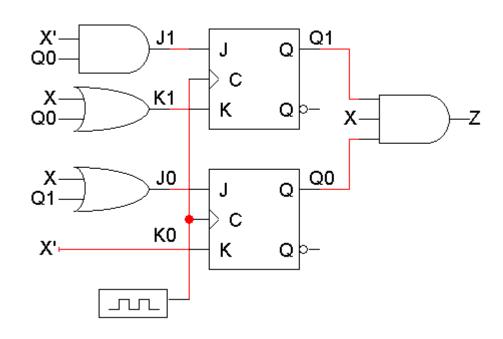


$$Z = X Q_1 Q_0$$

Step 5: Build the circuit

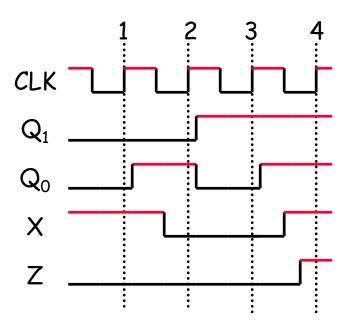
Lastly, we use these simplified equations to build the completed circuit





Timing diagram

- Here is one example timing diagram for our sequence detector
 - The flip-flops Q_1Q_0 start in the initial state, 00
 - On the first three positive clock edges, X is 1, 0, and 0. These inputs cause Q_1Q_0 to change, so after the third edge Q_1Q_0 = 11
 - Then when X=1, Z becomes 1 also, meaning that 1001 was found
- The output Z does not have to change at positive clock edges. Instead, it may change whenever X changes, since $Z = Q_1Q_0X$



Building the same circuit with D flip-flops

- What if you want to build the circuit using D flip-flops instead?
- We already have the state table and state assignments, so we can just start from Step 3, finding the flip-flop input values
- D flip-flops have only one input, so our table only needs two columns for D_1 and D_0

Pres	sent		Next		Flip-flop		
Sto	ate	Input	Sto	ate	input <i>s</i>		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0			0
0	0	1	0	1			0
0	1	0	1	0		•	0
0	1	1	0	1			0
1	0	0	1	1			0
1	0	1	0	1			0
1	1	0	0	0			0
1	1	1	0	1			1

D flip-flop input values (Step 3)

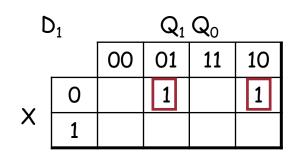
- The D excitation table is pretty boring; set the D input to whatever the next state should be
- You don't even need to show separate columns for D_1 and D_0 ; you can just use the Next State columns

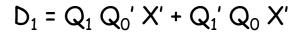
Q(†)	Q(†+1)	D	Operation
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

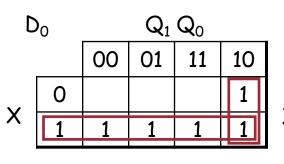
Pres	sent		Next		Flip	flop	
Sto	ate	Input	Sto	ate	inputs		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	D_0	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Finding equations (Step 4)

Pres	sent		Ne	ext	Flip flop		
Sto	ate	Input	Sto	ate	input <i>s</i>		Output
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1





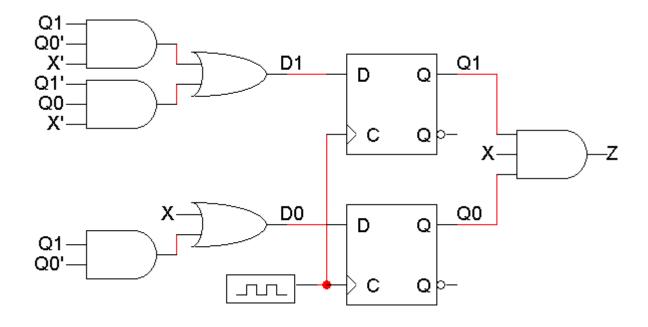


_		\					
D^{0}	=	X	+	Q	1	Q	<u>(</u>

Z	<u>Z</u>	$Q_1 Q_0$				
		00	01	11	10	
,	0					
	1			1		

$$Z = X Q_1 Q_0$$

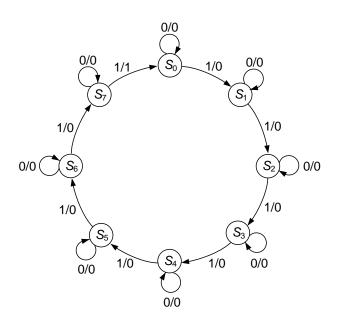
Building the circuit (Step 5)



Binary Counter

One-input/one-output modulo-8 binary counter: produces output value 1 for every eighth input 1 value

State diagram and state table:



	N	S	Out	tput
PS	x = 0	x = 1	x = 0	x = 1
S_0	S_0	S_1	0	0
S_1	S_1	S_2	0	0
S_2	S_2	S_3	0	0
S_3	S_3	S_4	0	0
S_4	S_4	S_5	0	0
S_5	S_5	S_6	0	0
S_6	S_6	S_7	0	0
S_7	S_7	S_0	0	1

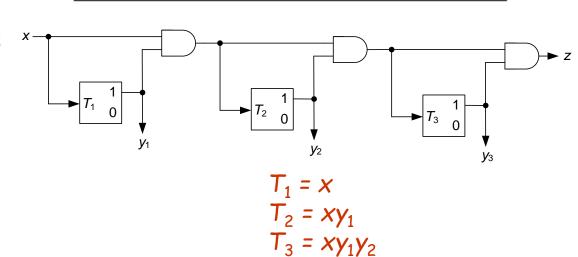
Binary Counter (Contd.)

Transition and output tables:

PS	NS		2	z
$y_3y_2y_1$	x = 0	x = 1	x = 0	x = 1
000	000	001	0	0
001	001	010	0	0
010	010	011	0	0
011	011	100	0	0
100	100	101	0	0
101	101	110	0	0
110	110	111	0	0
111	111	000	0	1

Excitation table for T flip-flops and logic diagram:

	$T_3T_2T_1$			
$y_3y_2y_1$	x = 0	x = 1		
000	000	001		
001	000	011		
010	000	001		
011	000	111		
100	000	001		
101	000	011		
110	000	001		
111	000	111		



 $z = xy_1y_2y_3$

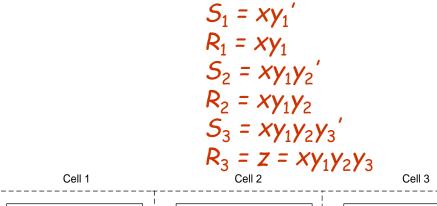
Implementing the Counter with SR Flip-flops

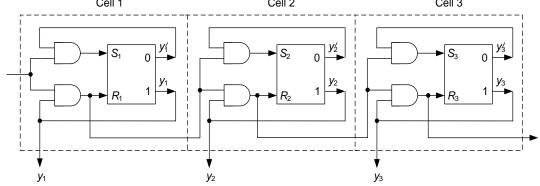
Transition and output tables:

Excitation table for SR flip-flops and logic diagram:

	x = 0			x = 1		
$y_3y_2y_1$	S_3R_3	S_2R_2	S_1R_1	S_3R_3	S_2R_2	S_1R_1
000	0-	0–	0–	0–	0–	10
001	0-	0-	-0	0-	10	01
010	0-	-0	0-	0-	-0	10
011	0-	-0	-0	10	01	01
100	-0	0-	0-	-0	0-	10
101	-0	0-	-0	-0	10	01
110	-0	-0	0-	-0	-0	10
111	-0	-0	-0	01	01	01

PS	N	S	z		
$y_3y_2y_1$	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	001	010	0	O	
010	010	011	0	О	
011	011	100	0	O	
100	100	101	0	O	
101	101	110	0	O	
110	110	111	0	O	
111	111	000	0	1	





Summary

- The basic sequential circuit design procedure:
 - Make a state table and, if desired, a state diagram. This step is usually the hardest
 - Assign binary codes to the states if you didn't already
 - Use the present states, next states, and flip-flop excitation tables to find the flip-flop input values
 - Write simplified equations for the flip-flop inputs and outputs and build the circuit

THANK YOU

ANY QUESTIONS?????