Synchronous Sequential Circuit Design

Q)

Combinational Logic

* Combinational Logic:
= Output depends only on current input
- Has no memory

Sequential Logic

* Sequential Logic:
- Output depends not only on current input but also on past input
values, e.g., design a counter

= Need some type of memory to remember the past input values

Sequential Circuits

Inputs ——m

Combinational
circuit

Information Storing

Circuits
» Outputs
Next !
state | Storage Present
N~ elements state

!

Timed "States”

Types of Sequential circuits

Synchronous vs. Asynchronous

There are two types of sequential circuits:

* Synchronous sequential circuit: circuit output
changes only at some discrete instants of
time. This type of circuits achieves
synchronization by using a timing signal called
the clock.

* Asynchronous sequential circuit: circuit
output can change at any time (clockless).

Synchronous Sequential Circuits:

Flip flops as state memory

Inputs ——m o » Qutputs
Combinational
circuit o

Flip-flops

Clock pulses

(a) Block diagram

(b) Timing diagram of clock pulses

m The flip-flops receive their inputs from the
combinational circuit and also from a clock signal
with pulses that occur at fixed intervals of time,
as shown in the timing diagram.

Moore and Mealy Models

* Sequential Circuits or Sequential Machines are also called Finite State
Machines (FSMs). Two formal models exist:

= Moore Model = Mealy Model

- Named after E.F. Moore * Named after G. Mealy

« Qutputs are only a function of « Outputs are a function of inputs
states and states

Types of Sequential Circuits Illustra

* Moore machine:
— Outputs = h(State)
* Mealy machine
— Outputs = g(Inputs, State)

Mealy
Inputs Clc;r;l; Outputs
-E Combina- —
tional <
Logic Next Storage tate
State” | Elements | (or pregent state)

IC_LOC K

Sequential circuit design procedure

Step 1.
Make a state table based on the problem statement. The table should
show the present states, inputs, next states and outputs. (It may be
easier to find a state diagram first, and then convert that to a table)

Step 2:
Assign binary codes to the states in the state table, if you haven't already.
If you have n states, your binary codes will have at least

[log, nldigits, and your circuit will have at least [log, n| flip-flops

Step 3:
For each flip-flop and each row of your state table, find the flip-flop input
values that are needed to generate the next state from the present state.
You can use flip-flop excitation tables here.

Step 4:
Find simplified equations for the flip-flop inputs and the outputs.

Step 5:
Build the circuit!

Sequence recognizer

* A sequence recognizer is a special kind of sequential circuit that looks
for a special bit pattern in some input

* The recognizer circuit has only one input, X

= One bit of input is supplied on every clock cycle
- This is an easy way to permit arbitrarily long input sequences

* There is one output, Z, which is 1 when the desired pattern is found

* Our example will detect the bit pattern "1001":

Inputs: 11100110100100110..
Outputs: 00000100000100100...

!

* A sequential circuit is required because the circuit has to "remember’
the inputs from previous clock cycles, in order to determine whether
or not a match was found

Step 1: Making a state table

* The first thing you have to figure out is precisely how the use of state
will help you solve the given problem

- Make a state table based on the problem statement. The table
should show the present states, inputs, next states and outputs

- Sometimes it is easier to first find a state diagram and then
convert that to a table

* This is usually the most difficult step. Once you have the state table,
the rest of the design procedure is the same for all sequential circuits

A basic state diagram

* What state do we need for the sequence recognizer?

- We have to "remember” inputs from previous clock cycles

- For example, if the previous three inputs were 100 and the current
input is 1, then the output should be 1

= In general, we will have to remember occurrences of parts of the
desired pattern—in this case, 1, 10, and 100

* We'll start with a basic state diagram:

O O G e O

State Meaning
A | None of the desired pattern (1001) has been input yet.
B We've already seen the first bit (1) of the desired pattern.
C We've already seen the first two bits (10) of the desired pattern.
D | We've already seen the first three bits (100) of the desired pattern.

Overlapping occurrences of the pattern

What happens if we're in state D (the last three inputs were 100), and

the current input is 1?

= The output should be a 1, because we've found the desired pattern

- But this last 1 could also be the start of another occurrence of the
pattern! For example, 1001001 contains two occurrences of 1001

— To detect overlapping occurrences of the pattern, the next state

should be B.

@ 1/0 @ 0/0 @ 0/0 _@
1/1

State Meaning
A | None of the desired pattern (1001) has been input yet.
B | We've already seen the first bit (1) of the desired pattern.
C We've already seen the first two bits (10) of the desired pattern.
D | We've already seen the first three bits (100) of the desired pattern.

13

Filling in the other arrows

* Two outgoing arrows for each node, to account for the possibilities of
X=0 and X=1

* The remaining arrows we need are shown in blue. They also allow for
the correct detection of overlapping occurrences of 1001.

0/0
1/0
A 1/0 B 0/0 @ 0/0
1/0
0/0 1/1
State Meaning

A | None of the desired pattern (1001) has been input yet.

B | We've already seen the first bit (1) of the desired pattern.

C We've already seen the first two bits (10) of the desired pattern.

D | We've already seen the first three bits (100) of the desired pattern.

14

Mealy state diagram & table

0/0
1/0
A 1/0 8 0/0 @ 0/0
1/0
0/0 1/1

Present Next
State | Input | State | Output
A 0 A 0
A 1 B o)
B 0 C 0
B 1 B o)
C 0 D 0
C 1 B 0
D o) A o)
D 1 B 1

Step 2: Assigning binary codes to states

* We have four states ABCD, so we need at least two flip-flops Q;Qq

* The easiest thing to do is represent state A with Q;Q, = 00, B with 01, C
with 10, and D with 11

* The state assignment can have a big impact on circuit complexity, but we
won't worry about that too much in this class

Present Next
Present Next State | Input | State Output
State | Input | State | Output Q1 Qo X Q1 Qo Z
A o) A 0 O O 0 0 0 0
A 1 B 0 O O 1 0 1 0
B 0 C 0 o 1 0 1 0 0
B 1 B 0 o 1 1 0 1 0
C 0 D 0 1 0 0 1 1 0
C 1 B 0 1 0 1 0 1 0
D o) A 0 1 1 0 0 0 0
D 1 B 1 1 1 1 0 1 1

Step 3: Finding flip-flop input values

* Next we have to figure out how to actually make the flip-flops change
from their present state into the desired next state

* This depends on what kind of flip-flops you usel!

* We'll use two JKs. For each flip-flip Q;, look at its present and next states,
and determine what the inputs J; and K; should be in order to make that
state change.

Present Next

State | Input | State Flip flop inputs Output
Q Qo | X Q Q| Ji K Jo Ko Z
0) 0) 0) 0) 0 0)
0) 0) 1 0) 1 0)
0) 1 0) 1 0 0)
0) 1 1 0) 1 0)
1 0) 0) 1 1 0)
1 0) 1 0) 1 0)
1 1 0) 0) 0) 0)
1 1 1 0) 1 1

Finding JK flip-flop input values

For JK flip-flops, this is a little tricky. Recall the characteristic table:

J K| Q@#+1) | Operation
0O 0] Q(t) No change
0O 1 0) Reset

1 O 1 Set

1 1] Q(t) | Complement

If the present state of a JK flip-flop is O and we want the next state to be

1, then we have two choices for the JK inputs:

- We can use JK= 10, to explicitly set the flip-flop's next state to 1
- We can also use JK=11, to complement the current state O

So to change from O to 1, we must set J=1, but K could be either O or 1

Similarly, the other possible state transitions can all be done in two

different ways as well

JK excitation table

* Anexcitation table shows what flip-flop inputs are required in order to
make a desired state change

Q(t) Q+1) | J K Operation
0 0 O x | No change/reset
0 1 1 x| Set/complement
1 0 x 1 | Reset/complement
1 1 x 0 No change/set

* This is the same information that's given in the characteristic table, but
presented "backwards”

J K| Q@#+1) | Operation
0O 0] Q(t) No change
o 1 0 Reset

1 O 1 Set

1 1

Q'(t) | Complement

Back to the example

Use the JK excitation table on the right to

Q) Q(t+1)

J K
find the correct values for each flip-flop's 8 (1) Cl) i
inputs, based on its present and next states 1 0 x 1
1 1 x 0
Present Next
State | Input | State Flip flop inputs Output

Qi Q| X Q Qo | Ji K Jo Ko Z

0 0] 0] 0 0] 0 X 0 X 0]

0 0] 1 0 1 0 X 1 X 0]

0 1 0 1 0] 1 X X 1 0]

0 1 1 0 1 0] X X 0 0]

1 0] 0 1 1 X 0 1 X 0]

1 0] 1 0] 1 X 1 1 X 0]

1 1 0 0 0] X 1 X 1 0]

1 1 1 0 1 X 1 X 0 1

Step 4: Find equations for the FF inputs and output

* Now you can make K-maps and find equations for each of the four flip-
flop inputs, as well as for the output Z

* These equations are in terms of the present state and the inputs

* The advantage of using JK flip-flops is that there are many don't care
conditions, which can result in simpler equations

Present Next

State | Input | State Flip flop inputs Output
Q Qo| X Q Q| Ji K Jo Ko Z
0 0 0) 0) 0) 0) X 0) X 0)
0 0 1 0] 1 0] X 1 X 0
0 1 0) 1 0) 1 X X 1 0)
0 1 1 0) 1 0) X X 0 0)
1 0] 0] 1 1 X 0] 1 X 0]
1 0 1 0] 1 X 1 1 X 0]
1 1 0) 0) 0) X 1 X 1 0)
1 1 1 0) 1 X 1 X 0 1

FF input equations

Present Next
State | Input | State Flip flop inputs Output
Q: Qo X Q Q| J1 K Jo Ko Z
0 0 0 0 0 0 X 0 X 0
0 0 1 0 1 0 X 1 X 0
0] 1 0] 1 0] 1 X X 1 0]
0 1 1 0 1 0 X X 0 0]
1 0 0 1 1 X ol 1 X 0
1 0] 1 0 1 X 1 1 X 0]
1 1 0 0 0 X 1 X 1 0
1 1 1 0 1 X 1 X 0 1
Ji Q; Qo K Q; Qo
O0(01]|11 |10 00| 01(11]10
O] O | 1 xl 0] 1 0
X 1 O| 0| x X 1 1 1
Ji1= X' Qo Ki= X+ Qg

FF input equations

Present Next
State | Input | State Flip flop inputs Output
Q: Qo X Q Q| J1 K Jo Ko Z
0 0 0 0 0 0 X 0 X 0
0 0 1 0 1 0 X 1 X 0
0] 1 0] 1 0] 1 X X 1 0]
0 1 1 0 1 0 X X 0 0]
1 0 0 1 1 X 0 1 X 0
1 0] 1 0 1 X 1 1 X 0]
1 1 0 0 0 X 1 X 1 0
1 1] 1 |o y‘% 1
Jo Q; Qo Ko Q; Qo
O0(01]|11 |10 00| 01(11]10
O] O 1 0] | X 1 1 xI
SR 1] X1 xlolo]x
Jo= X+ Q Ko= X

Output equation

Output
Z

Next

Present

o

N
v
5

o
£
(e
o
Y
Qo
w

>

o
v @
=
(o]
o=
e
=
3 x
[-
=

(@]
» O
(@]
=
e

Q; Qo

Z

10

11

00 | O1

£=XQ Qg

Step 5: Build the circuit

* Lastly, we use these simplified equations to build the completed circuit

J1= X Qo
Ki=X+Qq

Jo= X+ Q
KO:X,

Z = QiQoX

X' — J1
Q0 —

X K1
Q0

N

7T X 7

X JO
Q1
- KO

*_

Qo

Timing diagram

* Here is one example timing diagram for our sequence detector

= The flip-flops Q;Qq start in the initial state, 00

= On the first three positive clock edges, X is 1, 0, and O. These inputs
cause Q;Q, to change, so after the third edge Q;Q, = 11

= Then when X=1, Z becomes 1 also, meaning that 1001 was found

* The output Z does not have to change at positive clock edges. Instead, it
may change whenever X changes, since Z = Q;QyX

L2 3 4
LU LU

Building the same circuit with D flip-flops

What if you want to build the circuit using D flip-flops instead?

We already have the state table and state assignments, so we can just
start from Step 3, finding the flip-flop input values

D flip-flops have only one input, so our table only needs two columns for
D1 and Do

Present Next Flip-flop
State | Input State inputs Output

Q Qo | X | Q Qo | D1 Do Z
O O 0 0 0 0
O O 1 0 1 0
0 1 0 1 0 0
0 1 1 0 1 0
1 0 0 1 1 0
1 0 1 0 1 0
1 1 0 0 0 0
1 1 1 0 1 1

D flip-flop input values (Step 3)

The D excitation table is pretty boring;

set the D input to whatever the next el @l LD L O
state should be 0 O [O] Reset
0) 1 1 Set

You don't even need to show separate 1 0 0 Reset
columns for D; and Dy; you can just use 1 1 1 Set
the Next State columns

Present Next Flip flop

State | Input State inputs Output

Q Qo | X Qr Qo [D1 Do Z

0) o) o) 0 0 0) o) o)

o) 0 1 0 1 0] 1 0]

0 1 0 1 0 1 0 0

0 1 1 0 1 0 1 0

1 0 0 1 1 1 1 0

1 0 1 0 1 0 1 0

1 1 0] 0 0 0 0 0

1 1 1 0 1 0 1 1

Finding equations (Step 4)

Present Next Flip flop
State | Input State inputs Output
Q Q| X Qi Qo | D1 Do Z
o) o) o) o) o) 0 o) o)
o) o) 1 o) 1 0 1 0]
o) 1 0 1 o) 1 0] 0
o) 1 1 o) 1 0 1 0
1 o) 0] 1 1 1 1 0]
1 o) 1 o) 1 0 1 0
1 1 0] o) o) 0 0 o)
1 1 1 o) 1 0] 1 1
D, Q1 Qo Do Q: Qo V4 Q1 Qo
0001|1110 0001|1110 0001|1110
0 11 11 0 1 0
X X | * [1
D= Q Qo X'+ Q; Qo X Do = X+ Q; Qo Z=XQ; Qo

Building the

circuit (Step 5)

Q1 —
Q0'—

Q1'—
Q0—

Q1—

o]

Q0" —

Qo

R

Binary Counter

One-input/one-output modulo-8 binary counter: produces output value
1 for every eighth input 1 value

State diagram and state table:

0/0

NS Cutput
PS|z=0 z=1|xz=0 =1
Sa S 51 0 0
S S Sa 0 0
Sa So Sa 0 0
Sa Sy Sy 0 0
Sy Sy St 0 0
St S G 0] 0
Se Sk v 0] 0
Se S 50 0 1

— Binary Counter (Contd)

PS NS A
yayatyy | =0 wx=1|x=0 =x=1
-)) D01 0 0
Transition and output tables: 001 001 010 0 0
010 010 011 0 0
011 011 100 0 0
100 100 101 0 0
101 101 110 0 0
110 110 111 0 0
111 111 000 0 1
Excitation table for T
flip-flops and logic diagram: *) B
gl 0 T2 0 >
157157,
yayoyy | =0 =1 Ya Y2
oo | oo on T, = x
010 | ooo ool ;2 = X1
011 000 111 3 = XY1Ys
100 000 001 Z = XYiY>Y3
101 000 011
110 | 000 001
111 000 111

Transition and output tables: P NS
Wallat x =0 am =1 ax =0 a =1
(N (NN o001] o
oo oo RN C 0
010 o710 011 O 0
o011 o011 1 OW C 0
1w 100 101 O 0
101 101 110] o
110 110 111 C 0
. . 111 111 0O O 1
Excitation table for SR
flip-flops and logic diagram: S, = xy;’
Ry = xy,
S; = Xy1Ys
SR :;‘:Rﬂ S\R, | S3R E‘:Rl SR Re = Xy1ye
Yaliatn K e L R Ji3 2417 1L S:X !
00 | 0. 0 0 | 0 0 10 R3- Y1yaYs
001 | 0o o 0 | 0 10 o0l . 3(:'”;2”‘)’1)’2)’3 o
010 - -0 0- | o 0 w | St s S
o1 | oo 0 o | 10 01 ol ; | ; i
wo | 0 o0 0 | 0 0 10 :\:D—w olii\;D—wz oﬁ:\;D—'SS o)
wr | 0 o 0 | 0 10 01 |-t v ! v | vy |
1m0 0 0 | 0 0 10 ;FD=R1 1—'ET_D=R2 1—>E'T_D gaingl
1t | 0 0 0 [o1 o1 o l | l |

\

Summary

The basic sequential circuit design procedure:

Make a state table and, if desired, a state diagram. This step is usually
the hardest

Assignh binary codes to the states if you didn't already

Use the present states, next states, and flip-flop excitation tables to
find the flip-flop input values

Write simplified equations for the flip-flop inputs and outputs and build
the circuit

